A Note on Amdeberhan-Moll’s Conjecture

نویسنده

  • Olivia X. Yao
چکیده

Recently, Amdeberhan and Moll gave a conjecture on ASM sequences. In this note, we show that this conjecture is not true and we give a new conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of a Conjecture of Amdeberhan and Moll on a Divisibility Property of Binomial Coefficients

Let a, b and n be positive integers with a > b. In this note, we prove that (2bn + 1)(2bn + 3) ( 2bn bn )∣∣∣∣3(a− b)(3a− b)(2an an )( an bn ) . This confirms a recent conjecture of Amdeberhan and Moll.

متن کامل

A Proof of Moll’s Minimum Conjecture

Abstract. Let di(m) denote the coefficients of the Boros-Moll polynomials. Moll’s minimum conjecture states that the sequence {i(i+1)(d2i (m)−di−1(m)di+1(m))}1≤i≤m attains its minimum with i = m. This conjecture is a stronger than the log-concavity conjecture proved by Kausers and Paule. We give a proof of Moll’s conjecture by utilizing the spiral property of the sequence {di(m)}0≤i≤m, and the ...

متن کامل

A Computer Proof of Moll’s Log-Concavity Conjecture

In his study [7] on quartic integrals, Moll met a specialized family of Jacobi polynomials. Moll conjectured that the corresponding coefficient sequences are log-concave. In this paper we settle Moll’s conjecture by a non-trivial usage of computer algebra.

متن کامل

Proof of Moll's minimum conjecture

Let di(m) denote the coefficients of the Boros-Moll polynomials. Moll’s minimum conjecture states that the sequence {i(i+1)(di (m)−di−1(m)di+1(m))}1≤i≤m attains its minimum at i = m with 2−2mm(m + 1) ( 2m m )2 . This conjecture is stronger than the log-concavity conjecture proved by Kauers and Paule. We give a proof of Moll’s conjecture by utilizing the spiral property of the sequence {di(m)}0≤...

متن کامل

A Short Proof of Moll's Minimal Conjecture

We give a short proof of Moll’s minimal conjecture, which has been confirmed by Chen and Xia.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012